process: Development, validation and implementation,” Talanta, vol. 120,
pp. 114–125, Mar. 2014, doi: 10.1016/j.talanta.2013.11.072
[36] S. M. Mercier, P. M. Rouel, P. Lebrun, B. Diepenbroek, R. H. Wijffels, and M.
Streefland, “Process analytical technology tools for perfusion cell culture,” Eng. Life
Sci., vol. 16, no. 1, pp. 25–35, 2016, doi: 10.1002/elsc.201500035
[37] H. Mehdizadeh, D. Lauri, K. M. Karry, M. Moshgbar, R. Procopio-Melino, and D.
Drapeau, “Generic Raman-based calibration models enabling real-time monitoring
of cell culture bioreactors,” Biotechnol. Prog., vol. 31, no. 4, pp. 1004–1013, 2015,
doi: 10.1002/btpr.2079
[38] S. Craven, J. Whelan, and B. Glennon, “Glucose concentration control of a fed-batch
mammalian cell bioprocess using a nonlinear model predictive controller,” J. Process
Control, vol. 24, no. 4, pp. 344–357, 2014, doi: 10.1016/j.jprocont.2014.02.007
[39] B. Berry, J. Moretto, T. Matthews, J. Smelko, and K. Wiltberger, “Cross-scale
predictive modeling of CHO cell culture growth and metabolites using Raman
spectroscopy and multivariate analysis,” Biotechnol. Prog., vol. 31, no. 2,
pp. 566–577, 2015, doi: 10.1002/btpr.2035
[40] R. M. Santos, P. Kaiser, J. C. Menezes, and A. Peinado, “Talanta Improving reliability
of Raman spectroscopy for mAb production by upstream processes during bioprocess
development stages,” Talanta, vol. 199, no. November 2018, pp. 396–406, 2019, doi:
10.1016/j.talanta.2019.02.088
[41] J. Whelan, S. Craven, and B. Glennon, “In situ Raman spectroscopy for simultaneous
monitoring of multiple process parameters in mammalian cell culture bioreactors,”
Biotechnol. Prog., vol. 28, no. 5, pp. 1355–1362, 2012, doi: 10.1002/btpr.1590
[42] N. R. Abu-Absi et al., “Real time monitoring of multiple parameters in mammalian
cell culture bioreactors using an in-line Raman spectroscopy probe,” Biotechnol.
Bioeng., vol. 108, no. 5, pp. 1215–1221, May 2011, doi: 10.1002/bit.23023
[43] L. Saint et al., “In-line and real-time prediction of recombinant antibody titer by in
situ Raman spectroscopy,” Anal. Chim. Acta, vol. 892, pp. 148–152, 2015, doi: 10.1
016/j.aca.2015.08.050
[44] M. Li, B. Ebel, F. Chauchard, E. Guédon, and A. Marc, “Parallel comparison of in
situ Raman and NIR spectroscopies to simultaneously measure multiple variables
toward real-time monitoring of CHO cell bioreactor cultures,” Biochem. Eng. J.,
vol. 137, pp. 205–213, 2018, doi: 10.1016/j.bej.2018.06.005
[45] M. Li, B. Ebel, F. Chauchard, E. Guedon, and A. Marc, “Real-time monitoring of
antibody glycosylation site occupancy by in situ raman spectroscopy during bior-
eactor CHO cell cultures,”Biotechnol. Prog., vol. 34, no. 2, 486–493, 2018, doi:
10.1002/btpr.2604
[46] S. Metze et al., “Multivariate data analysis of capacitance frequency scanning for online
monitoring of viable cell concentrations in small-scale bioreactors,” Anal. Bioanal.
Chem., vol. 412, no. 9, pp. 2089–2102, 2020, doi: 10.1007/s00216-019-02096-3
[47] E. Petiot and A. A. Kamen, “Real-time monitoring of influenza virus production
kinetics in HEK293 cell cultures,” Biotechnol. Prog., vol. 29, no. 1, pp. 275–284,
Jul. 2012, doi: 10.1002/btpr.1601
[48] J. P. Carvell and J. E. Dowd, “On-line Measurements and Control of Viable Cell
Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance,”
Cytotechnology, vol. 50, no. 1–3, pp. 35–48, Mar. 2006, doi: 10.1007/s10616-005-3
974-x
[49] K. Braasch et al., “The changing dielectric properties of CHO cells can be used to
determine early apoptotic events in a bioprocess,” Biotechnol. Bioeng., vol. 110,
no. 11, pp. 2902–2914, 2013, doi: 10.1002/bit.24976
Analytics and virus production processes
223